Conducting polymer actuators+phd thesis

In this article, we discussed two examples of novel organic bioelectronics devices: electrocorticography arrays and organic electrochemical transistors. Electrocorticography arrays designed with PEDOT:PSS electrodes outperform gold electrodes of similar geometry. These PEDOT:PSS based arrays provide a means of recording ECoG signals inside sulci in the human brain, significantly enhancing diagnostic capabilities, primarily due to their unique conformability. Organic electrochemical transistors deliver real-time information on subtle changes in barrier tissue integrity. The information obtained from this device can be used to understand the effect of pathogens and toxins, and the transport of drugs.

We would like to thank Emily Chang, Raechelle D’Sa, Cory Kruetzer, and Carolina Wilson at TDA Research, Inc. for the synthetic work, Profs. Anthony Caruso and Doug Schulz at North Dakota State University for the work function measurements, Prof. Bruce Parkinson and Dr. Bengt Jaekel at Colorado State University for the UPS measurements, and Dr. Sean Shaheen, Dr. Muhammet Kose, Dr. Don Selmarten, and Cary Allen at NREL for characterizing the n-type materials in organic photovoltaics. This work was carried out in part with funding from the National Science Foundation (contracts DMI- 0319320, OII-0539625, DMI-0110105) and the Office of the Secretary of Defense (contract N00164-06-C-6042).

Conducting polymer actuators+phd thesis

conducting polymer actuators+phd thesis


conducting polymer actuators+phd thesisconducting polymer actuators+phd thesisconducting polymer actuators+phd thesisconducting polymer actuators+phd thesis